organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3,5-Dimethoxy-2-[(4-propylphenyl)iminomethyl]phenol

Zarife Sibel Şahin,^a* Ayşen Alaman Ağar,^b Ferda Erşahin^b and Samil Isık^a

^aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, TR-55139 Samsun, Turkey, and ^bDepartment of Chemistry, Arts and Sciences Faculty, Ondokuz Mayıs University, 55139 Samsun, Turkey Correspondence e-mail: sgul@omu.edu.tr

Received 16 January 2009; accepted 4 March 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.052; wR factor = 0.145; data-to-parameter ratio = 16.8.

The title compound, C₁₈H₂₁NO₃, crystallizes in the phenolimine tautomeric form, with the H atom attached to oxygen rather than on nitrogen. This H atom is involved in a strong intramolecular O–H···N hydrogen bond. A C–H··· π interaction is also present. The dihedral angle between the aromatic rings is 12.23 (7)°.

Related literature

Schiff base compounds can be classified by their photochromic and thermochromic characteristics, see: Cohen et al. (1964); Hadjoudis et al. (1987); Calligaris et al. (1972); Hökelek et al. (2000); Dev et al. (2001); Ünver et al. (2002); Karadayı et al. (2003). Bernstein et al. (1995) describe the use of graph-set models for the description of hydrogen bonds.

Experimental

Crystal data

C18H21NO3 $M_r = 299.36$ Monoclinic, $P2_1/c$ a = 15.1143 (15) Å b = 7.2587 (5) Å c = 17.737 (2) Å $\beta = 123.669 \ (7)^{\circ}$

V = 1619.5 (3) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 296 K0.48 \times 0.26 \times 0.12 mm

Data collection

Stoe IPDS-II diffractometer	3353 independent reflections
Absorption correction: none	1337 reflections with $I > 2\sigma(I)$
18964 measured reflections	$R_{\rm int} = 0.075$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.052$	200 parameters
$wR(F^2) = 0.145$	H-atom parameters constrained
S = 0.86	$\Delta \rho_{\rm max} = 0.14 \text{ e} \text{ Å}^{-3}$
3353 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$\begin{array}{l} O2 - H2 \cdots N1 \\ C18 - H18B \cdots Cg2^{i} \end{array}$	0.82 0.96	1.87 2.80	2.602 (2) 3.764 (3)	148 178
		3		

Symmetry code: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$. Cg2 is the centroid of the C7–C12 ring.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences of Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant No. F279 of the University Research Grant of Ondokuz Mayıs University).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2174).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Calligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev. 7, 385-403
- Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041-2051
- Dev, D. K., Dev, S. P., Elmalı, A. & Elerman, Y. (2001). J. Mol. Struct. 562, 177-184.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hadjoudis, E., Vitterakis, M., Moustakali, I. & Mavridis, I. (1987). Tetrahedron, 43, 1345-1360.
- Hökelek, T., Kılıç, S., Işıklan, M. & Toy, M. (2000). J. Mol. Struct. 523, 61-69. Karadayı, N., Gözüyeşil, S., Güzel, B. & Büyükgüngör, O. (2003). Acta Cryst. E59, o161-o163.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.
- Ünver, H., Kabak, M., Zengin, D. M. & Durlu, T. N. (2002). J. Chem. Crystallogr. 31, 203-209.

supplementary materials

Acta Cryst. (2009). E65, 0718 [doi:10.1107/S1600536809007958]

3,5-Dimethoxy-2-[(4-propylphenyl)iminomethyl]phenol

Z. S. Sahin, A. A. Agar, F. Ersahin and S. Isik

Comment

Schiff bases have been extensively used as ligands in the field of coordination chemistry (Calligaris *et al.*, 1972). There are two characteristic properties of Schiff bases, *viz.* photochromism and thermochromism (Cohen *et al.*, 1964). These properties result from proton transfer from the hydroxyl O atom to the imine N atom (Hadjoudis *et al.*, 1987). Schiff bases display two possible tautomeric forms, namely the phenol-imine (Dey *et al.*, 2001; Karadayı *et al.*, 2003) and keto-amine (Hökelek *et al.*, 2000; Ünver *et al.*, 2002) forms.

In the structure of the title compound the N1—C16 bond length of 1.280 (3)Å is typical of a double bond. The dihedral angle between the C1—C6 and C8—C13 benzene rings is 12.23 (7)°. The C1—C16—N1—C7 torsion angle is 178.7 (2)°. Fig. 1 also shows a strong intramolecular hydrogen bond (O2—H2…N1) which can be described with an S(6) graph set motif (Bernstein *et al.*,1995). The compound also contains one intermolecular C—H… π interaction. Atom C18 in the molecule at (*x*, *y*, *z*) acts as hydrogen-bond donor to the centroid *Cg2* of the ring C7—C12 in the molecule at (1 - *x*, 1/2 + *y*, 3/2 - *z*), thus forming a chain running parallel to the [010] direction. The details of C—H… π interaction are given in Table 1.

Experimental

The compound 3,5-dimethoxy-2-[(4-propylphenylimino)methyl]phenol was prepared by refluxing of a mixture of a solution containing 2-hydroxy-4,6-dimethoxy-benzaldehyde (0.0236 g 0.129 mmol) in 20 ml ethanol and a solution containing 4-propylaniline (0.0175 g 0.129 mmol) in 20 ml ethanol. The reaction mixture was stirred for 1 h under reflux. Recrystallization from ethanol gave the pure product. The crystals of 4,6-dimethoxy-2-[(4-propylphenylimino)methyl]phenol suitable for X-ray analysis were obtained from ethylalcohol by slow evaporation (yield % 67; m.p.346–348 K) (Fig. 2).

Refinement

The O—H hydrogen bond was placed in a calculated position with an O—H distance of 0.82Å, but was alloed to rotate around the C—O bond at a fixed angle to best fit the experimental electron density. The H was refined $U_{iso}(H) = 1.5U_{eq}(O)$. The other H atoms attached to C atoms were refined using a riding model with C—H = 0.93Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic C atoms, C—H = 0.97Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for methylene C atoms and C—H = 0.96Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl C atoms.

Figures

Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability. The dashed line represents the O-H···N hydrogen bond.

Fig. 2. Synthesis of the title compound.

3,5-Dimethoxy-2-[(4-propylphenyl)iminomethyl]phenol

Crystal data	
C ₁₈ H ₂₁ NO ₃	$F_{000} = 640$
$M_r = 299.36$	$D_{\rm x} = 1.228 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 10898 reflections
<i>a</i> = 15.1143 (15) Å	$\theta = 1.4 - 28.0^{\circ}$
b = 7.2587 (5) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 17.737 (2) Å	T = 296 K
$\beta = 123.669 \ (7)^{\circ}$	Prism, yellow
V = 1619.5 (3) Å ³	$0.48 \times 0.26 \times 0.12 \text{ mm}$
Z = 4	

Data collection

Stoe IPDS-II diffractometer	3353 independent reflections
Radiation source: fine-focus sealed tube	1337 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.075$
Detector resolution: 6.67 pixels mm ⁻¹	$\theta_{\text{max}} = 26.5^{\circ}$
T = 296 K	$\theta_{\min} = 1.6^{\circ}$
ω scans	$h = -18 \rightarrow 18$
Absorption correction: none	$k = -8 \rightarrow 9$
18964 measured reflections	<i>l</i> = −22→22

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.052$
$wR(F^2) = 0.145$
<i>S</i> = 0.86
3353 reflections
200 parameters
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0666P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.14 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.53442 (17)	0.1004 (3)	0.80353 (15)	0.0667 (6)
C2	0.57933 (17)	0.1123 (3)	0.75252 (15)	0.0672 (6)
C3	0.68738 (17)	0.1079 (3)	0.79200 (16)	0.0722 (7)
Н3	0.7155	0.1170	0.7569	0.087*
C4	0.75352 (18)	0.0896 (3)	0.88549 (17)	0.0730 (7)
C5	0.71280 (19)	0.0762 (4)	0.93799 (17)	0.0825 (8)
Н5	0.7584	0.0629	1.0004	0.099*
C6	0.60502 (18)	0.0825 (3)	0.89829 (16)	0.0732 (7)
C7	0.26549 (18)	0.0884 (3)	0.76044 (16)	0.0678 (6)
C8	0.1924 (2)	0.1356 (4)	0.67118 (18)	0.0873 (8)
H8	0.2159	0.1722	0.6348	0.105*
C9	0.0850 (2)	0.1289 (4)	0.63550 (19)	0.0919 (8)
Н9	0.0375	0.1597	0.5749	0.110*
C10	0.0452 (2)	0.0787 (4)	0.6858 (2)	0.0817 (7)
C11	0.1189 (2)	0.0343 (4)	0.7747 (2)	0.0931 (9)
H11	0.0953	0.0002	0.8112	0.112*
C12	0.2272 (2)	0.0384 (4)	0.81199 (18)	0.0870 (8)
H12	0.2745	0.0069	0.8725	0.104*
C16	0.42105 (17)	0.1008 (3)	0.76044 (16)	0.0719 (7)
H16	0.3775	0.1081	0.6976	0.086*
C18	0.90908 (19)	0.1115 (4)	0.8815 (2)	0.1004 (9)
H18A	0.9850	0.1025	0.9219	0.151*
H18B	0.8904	0.2318	0.8546	0.151*
H18C	0.8840	0.0200	0.8349	0.151*
C17	0.5443 (2)	0.1229 (5)	0.60388 (16)	0.0988 (9)
H17A	0.4853	0.1357	0.5421	0.148*
H17B	0.5792	0.0074	0.6113	0.148*
H17C	0.5936	0.2219	0.6191	0.148*
C13	-0.0731 (2)	0.0740 (5)	0.6453 (2)	0.1140 (11)
H13A	-0.0832	0.0528	0.6941	0.137*
H13B	-0.1018	0.1950	0.6205	0.137*
C14	-0.1353 (2)	-0.0597 (5)	0.5758 (2)	0.1255 (12)
H14A	-0.1062	-0.1811	0.5996	0.151*

supplementary materials

H14B	-0.1278	-0.0367	0.5257	0.151*
C15	-0.2534 (2)	-0.0615 (5)	0.5394 (2)	0.1338 (14)
H15A	-0.2886	-0.1549	0.4937	0.201*
H15B	-0.2838	0.0566	0.5136	0.201*
H15C	-0.2621	-0.0872	0.5880	0.201*
N1	0.37759 (14)	0.0914 (3)	0.80506 (13)	0.0738 (6)
O1	0.86157 (12)	0.0821 (3)	0.93083 (11)	0.0921 (6)
O2	0.56789 (13)	0.0725 (3)	0.95188 (11)	0.0995 (7)
H2	0.5027	0.0758	0.9205	0.149*
O3	0.50721 (11)	0.1284 (3)	0.66174 (10)	0.0869 (6)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0666 (14)	0.0706 (17)	0.0586 (14)	-0.0048 (12)	0.0320 (13)	-0.0038 (13)
C2	0.0695 (15)	0.0707 (17)	0.0538 (14)	-0.0022 (12)	0.0293 (13)	-0.0031 (13)
C3	0.0699 (15)	0.0791 (18)	0.0677 (16)	-0.0023 (13)	0.0382 (13)	-0.0020 (15)
C4	0.0604 (14)	0.0728 (18)	0.0689 (16)	-0.0079 (12)	0.0254 (13)	-0.0030 (14)
C5	0.0741 (16)	0.106 (2)	0.0550 (14)	-0.0098 (15)	0.0280 (13)	-0.0006 (15)
C6	0.0744 (16)	0.0859 (19)	0.0553 (15)	-0.0108 (13)	0.0334 (14)	-0.0040 (14)
C7	0.0701 (15)	0.0712 (17)	0.0626 (15)	0.0008 (13)	0.0370 (14)	0.0005 (13)
C8	0.0779 (17)	0.100 (2)	0.0752 (18)	-0.0001 (15)	0.0368 (15)	0.0181 (16)
C9	0.0726 (17)	0.103 (2)	0.0811 (19)	0.0046 (15)	0.0309 (15)	0.0133 (17)
C10	0.0770 (16)	0.0770 (19)	0.094 (2)	0.0042 (14)	0.0491 (17)	-0.0086 (16)
C11	0.092 (2)	0.112 (2)	0.094 (2)	0.0066 (17)	0.0632 (19)	-0.0021 (19)
C12	0.0814 (18)	0.111 (2)	0.0739 (17)	0.0118 (15)	0.0463 (16)	0.0044 (15)
C16	0.0728 (15)	0.0767 (18)	0.0590 (14)	0.0011 (13)	0.0322 (13)	-0.0028 (14)
C18	0.0740 (16)	0.115 (2)	0.109 (2)	-0.0058 (16)	0.0486 (17)	0.0204 (19)
C17	0.0904 (17)	0.151 (3)	0.0602 (16)	0.0001 (18)	0.0451 (15)	-0.0106 (18)
C13	0.0812 (18)	0.124 (3)	0.131 (3)	0.0047 (18)	0.0549 (19)	-0.025 (2)
C14	0.0813 (19)	0.153 (3)	0.137 (3)	-0.007 (2)	0.057 (2)	-0.023 (3)
C15	0.0733 (19)	0.149 (3)	0.162 (3)	-0.0030 (19)	0.054 (2)	0.006 (3)
N1	0.0709 (12)	0.0871 (16)	0.0628 (12)	-0.0019 (11)	0.0367 (11)	-0.0005 (11)
01	0.0646 (10)	0.1177 (16)	0.0783 (12)	-0.0085 (10)	0.0298 (10)	0.0050 (11)
02	0.0793 (11)	0.156 (2)	0.0590 (10)	-0.0110 (13)	0.0359 (9)	0.0003 (12)
O3	0.0715 (10)	0.1344 (16)	0.0519 (10)	0.0047 (10)	0.0324 (9)	0.0013 (11)

Geometric parameters (Å, °)

C1—C2	1.403 (3)	C11—H11	0.9300
C1—C6	1.411 (3)	C12—H12	0.9300
C1—C16	1.438 (3)	C16—N1	1.280 (3)
C2—O3	1.360 (2)	С16—Н16	0.9300
C2—C3	1.375 (3)	C18—O1	1.422 (3)
C3—C4	1.389 (3)	C18—H18A	0.9600
С3—Н3	0.9300	C18—H18B	0.9600
C4—O1	1.364 (3)	C18—H18C	0.9600
C4—C5	1.375 (3)	C17—O3	1.417 (2)
C5—C6	1.371 (3)	C17—H17A	0.9600

С5—Н5	0.9300	C17—H17B	0.9600
C6—O2	1.347 (3)	C17—H17C	0.9600
C7—C12	1.374 (3)	C13—C14	1.435 (4)
С7—С8	1.380 (3)	C13—H13A	0.9700
C7—N1	1.418 (3)	C13—H13B	0.9700
C8—C9	1.379 (3)	C14—C15	1.525 (3)
C8—H8	0.9300	C14—H14A	0.9700
C9—C10	1.373 (3)	C14—H14B	0.9700
С9—Н9	0.9300	C15—H15A	0.9600
C10-C11	1.373 (4)	C15—H15B	0.9600
C10—C13	1.514 (3)	C15—H15C	0.9600
C11—C12	1.385 (3)	O2—H2	0.8200
C2—C1—C6	117.2 (2)	N1—C16—H16	118.7
C2C1C16	121.1 (2)	C1—C16—H16	118.7
C6—C1—C16	121.6 (2)	O1C18H18A	109.5
O3—C2—C3	123.5 (2)	O1C18H18B	109.5
O3—C2—C1	114.34 (19)	H18A—C18—H18B	109.5
C3—C2—C1	122.2 (2)	O1-C18-H18C	109.5
C2—C3—C4	118.4 (2)	H18A—C18—H18C	109.5
С2—С3—Н3	120.8	H18B-C18-H18C	109.5
С4—С3—Н3	120.8	O3—C17—H17A	109.5
O1—C4—C5	115.9 (2)	O3—C17—H17B	109.5
O1—C4—C3	122.8 (2)	H17A—C17—H17B	109.5
C5—C4—C3	121.3 (2)	O3—C17—H17C	109.5
C6—C5—C4	120.0 (2)	H17A—C17—H17C	109.5
С6—С5—Н5	120.0	H17B—C17—H17C	109.5
С4—С5—Н5	120.0	C14—C13—C10	117.5 (3)
O2—C6—C5	118.5 (2)	C14—C13—H13A	107.9
O2—C6—C1	120.6 (2)	C10—C13—H13A	107.9
C5—C6—C1	120.9 (2)	C14—C13—H13B	107.9
C12—C7—C8	117.7 (2)	C10-C13-H13B	107.9
C12—C7—N1	116.5 (2)	H13A—C13—H13B	107.2
C8—C7—N1	125.8 (2)	C13—C14—C15	115.1 (3)
C9—C8—C7	120.5 (2)	C13-C14-H14A	108.5
С9—С8—Н8	119.8	C15—C14—H14A	108.5
С7—С8—Н8	119.8	C13-C14-H14B	108.5
C10—C9—C8	122.7 (3)	C15-C14-H14B	108.5
С10—С9—Н9	118.7	H14A—C14—H14B	107.5
С8—С9—Н9	118.7	C14—C15—H15A	109.5
C9—C10—C11	116.1 (2)	C14—C15—H15B	109.5
C9—C10—C13	121.7 (3)	H15A—C15—H15B	109.5
C11—C10—C13	122.2 (3)	C14—C15—H15C	109.5
C10-C11-C12	122.3 (3)	H15A—C15—H15C	109.5
C10-C11-H11	118.8	H15B—C15—H15C	109.5
C12—C11—H11	118.8	C16—N1—C7	121.3 (2)
C7—C12—C11	120.7 (3)	C4—O1—C18	118.6 (2)
C7—C12—H12	119.7	С6—О2—Н2	109.5
C11—C12—H12	119.7	C2—O3—C17	118.41 (18)
N1-C16-C1	122.7 (2)		

supplementary materials

C6—C1—C2—O3	179.7 (2)	C8—C9—C10—C11	-0.2 (4)
C16—C1—C2—O3	1.6 (3)	C8—C9—C10—C13	179.5 (3)
C6—C1—C2—C3	-0.3 (4)	C9-C10-C11-C12	-0.4 (4)
C16—C1—C2—C3	-178.5 (2)	C13-C10-C11-C12	180.0 (3)
O3—C2—C3—C4	-179.5 (2)	C8—C7—C12—C11	0.6 (4)
C1—C2—C3—C4	0.5 (4)	N1-C7-C12-C11	179.0 (2)
C2—C3—C4—O1	179.3 (2)	C10-C11-C12-C7	0.2 (4)
C2—C3—C4—C5	-0.1 (4)	C2-C1-C16-N1	-179.5 (2)
O1—C4—C5—C6	180.0 (2)	C6-C1-C16-N1	2.5 (4)
C3—C4—C5—C6	-0.6 (4)	C9-C10-C13-C14	66.0 (4)
C4—C5—C6—O2	-178.8 (2)	C11—C10—C13—C14	-114.4 (4)
C4—C5—C6—C1	0.8 (4)	C10-C13-C14-C15	178.4 (3)
C2—C1—C6—O2	179.2 (2)	C1-C16-N1-C7	-178.7 (2)
C16—C1—C6—O2	-2.7 (4)	C12—C7—N1—C16	166.3 (2)
C2-C1-C6-C5	-0.3 (4)	C8—C7—N1—C16	-15.5 (4)
C16—C1—C6—C5	177.8 (2)	C5-C4-O1-C18	-174.5 (2)
C12—C7—C8—C9	-1.1 (4)	C3—C4—O1—C18	6.1 (4)
N1—C7—C8—C9	-179.3 (2)	C3—C2—O3—C17	6.2 (4)
C7—C8—C9—C10	0.9 (4)	C1—C2—O3—C17	-173.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O2—H2…N1	0.82	1.87	2.602 (2)	148
C18—H18B···Cg2 ⁱ	0.96	2.80	3.764 (3)	178
Symmetry codes: (i) $-x+1$, $y+1/2$, $-z+3/2$.				

Fig. 1

